The metallic part of the reagent gets complexed with C=O and the carbanion equivalent of $alkyl(R^1)$ or H is transferred to the trigonal carbon from the side of R_s (route a) in preference to that of R_M (route b) to give (2).

Although no mechanistic rationalization has been claimed, it is reasoned that C=O being complexed with the reagent become effectively the bulkiest group and is thus better placed between R_s and R_{M} .

Felkin-Anh- Model:-

Cram's Rule although correctly predicts the stereochemical course of the reactions , often fails to give quantitative assessment regarding asymmetric induction. In that aspect Felkin-Anh- Model gives better interpretations.

In this model, two reactive conformations (A) and (B) (Fig-2) have been considered in which either the largest(R_L) or the most electron –withdrawing group at C_{α} is placed at right angle to the C=O double bond. Between the two, the first with R_M opposing C=O and R_S gauche to R is usually preferred.

The non-bonded interactions which involve $R^{/}$ and R_{s} (rather than $R^{/}$ and R_{M}) are thus minimized.