.. -, TT @ TTm Assv VAL LA LUULUW QML UG Y CLUPLLITLIL. ‘

2.2 CLASSICAL WATERFALL MODEL

The classical waterfall model is intuitively the most obvious way to develop software. Though
the classical waterfall model is elegant and intuitively obvious, we shall see that it is not a
practical model in the sense that it cannot be used in actual software development projects.
That is, we can consider this model to be a theoretical way of developing software. Then why

Scanned by CamScanner

e e e g i - —_,__,———__,,_.—-—--——‘—"--—-—-——‘__ e ' :y ;
S e e e cl Qd
\:H

study this model at all? The reason is that all other life C’\-Cl{(‘ m(){flf‘.ls ATe In somg
based on tlie classical waterfall model. We t]wref(')l'(’ need 1o "lllht‘ understay,
waterfall model well, in order to be able to appreciate ‘mld d("l‘r'OD Proper uy
other life cvele models. Besides, we shall see later in tln's text t 1ﬁ.t this mode]
be used for‘ software development: it is the model that is normally adhered t,,

software documentation. le into the phases sh
. T [nto t asts shown
The classical waterfall model divides the life cycle 1 Shown jy Fi,

- . : : | resembles a case: Blrg
Observe that the diagrammatic representation of t.hlS mgdle I S & Cascade of Wate‘; !
This resemblance possibly justifies the name of this model. T,

M-ﬂ*——“—\‘

Yo

™ r \
d the ; (J,.pﬂ
ders, h ",
f01‘ dQv A‘lh‘hn

el

IDE{;_E

Feasibility study ——_—l
Requirements an_alysis
and specification '_l

‘Design
Coding and
_ unit testing
/ _ l

| Integratioh and -
system testing .

Maintenance

- Figure 2.1: Classical waterfall model.

2.2.1 Phases of Classical Waterfall Model

The classical waterfall model breaks down the life cycle into an intuitive set of phases. Th
different phases of this model are: feasibility study, requirements analysis and specificatin,
design, coding and unit testing, integration and system testing, and maintenance. The phas
starting from the feasibility study to the integration and system testing phase are known
the development phases. The software is developed during the development phases, and at tk
end of the development phases of the life cycle, the product becomes ready to be deliveredt:
the customer. The maintenance phase commences after completion of the development phase

An activity that spans all phases of any software development is project management. Sin*
the project management activity spans the entire project duration, it is not shown separatd!
in Figure 2.1. Even though conveniently omitted in the life cycle diagram, project managen®
nevertheless is an important activity in the life cycle and deals with man’aging the effort at
stages of product development and maintenance.

The work needed to be carried out during different life cycle phases typically requi®
relatively different efforts to be put in by the development team. The relative amoum’-”‘
effort necessary for completing the activities of different phases for a typical product

_d

Scanned by CamScanner

2.2 Classical \\'ntg}'ﬁl_l Model 35
:-;:“’_A’____,._,_--a a5 -

chown in Figure 2.2 We can observe from Figure 2.2 that among all the life cycle phases,
{he maintenance phase “’\"Tmﬂ“.\‘ requires the maximum effort, On the average, about 607 of
the total life cycle effort 15 spent on the maintenance activities alone. However, among the
development phases, the integration and system testing phase requires the maximum effort in

o typical development project. In the following, we briefly describe the different phases of the
classical waterfall model.

60 T 1: Requirements analysis and specifieation 5
2: Design - :
ot 3:Codi_ng&ndunittesting {
, 4: Testing :
b 5: Maintenance
-8 401 '
o
=
- X 30+ !
20+ 4
2
10+ ; 3 x
1 7 ,
0 ,] 1 , - el Rt : - > |
il iate s o Phakes i Al ¥

Figure 2.2: Relative effort distribution among different phases of a typical product.

Feasibility study

3 (The main aim of the feasibility study activity is to determine whether it would be financially
and technically feasible to develop the product. The feasibility study activity involves analysis
of the problem and collection of all relevant information relating to the product such as the
different data items which would be input to the system, the processing required to be carried
out on these data, the output data required to be produced by the system. as well as various
constraints on the behaviour of the system) These collected data are analyzed to arrive at the

; following: » _ : ,

g 1. An abstract problem definition: Only the important requirements of the customer are
% captured and the details of the requirements are ignored.

z 2. Formulation of the different strategies for solving the problem: All the different
'g ways in which the problem can be solved are identified. |

. 3. Evaluation of the different solution strategies: The different solution strategies are
© analyzed to examine their benefits and shortcomings. This analysis usually requires making
| approximate estimates of the resources required, cost of development, and development time
required for each of the alternate solutions. These estimates are used as the basis for comparing
. the different solutions. Once the best solution is identified, all later phases of development
E

g .

Scanned by CamScanner

L

= . Software Life gy,
= . %

[n other words, we can say that during the

exact solution strategy to be adopteq aeaﬁibni'

a very important stage. At this sr,a,,:e.'%f
due to high cost, resource ‘Jn R

are carried out to as per this solution.
study, very high-level decisions regarding the
Therefore, feasibility study is considered to be
also be determined that none of the solutions ig feasible ' . M
or some technical reasons. This scenario would, of courseé, require the project to he abanral“‘é\
The following case study is an example of a feasibility St”‘ly" un(lerta.ken by an OrgarliLqrf"i
It is intended to give you a feel of the activities and 83U€s involved in the feasihility Ftnl!);l
{ l(:/

phase of a typical software project.
h

d. (GMC) has mines located at varigyg place. |

A mining company named Galaxy Mining Company Lt : tes. The ¢ v
in India. It has about fifty different mine sites spread across eight states. i ompany empigy |
large number of miners at each mine site. Mining being 2 risky profession, the company intenqg to |
standard provident fynq th :

at |

; ; : . iti he
operate a special provident fund, which would exist In addltlon.to the
the miners already enjoy. The main objective 0 al provident fund (SPF) woulq b to |

{

f having the special
quickly distribute some compensation before the PF amount is paid- _
According to this scheme, each mine site would deduct SPF instalments frorn fzach miner every mopy
and deposit the same to the CSPFC (central special provident fund CO"Tm'SS'O"e')- The CSPFC will
maintain all details regarding the SPF installments collected from the miners.

GMC requested a reputed software vendor Adventure Software Inc. to undertake the task of developing
the software for automating the maintenance of SPF ds of all empl?yees- GMC has realized thyt
besides saving manpower on bookkeeping work, the s0 p in speedy settlemer_u of claim
cases. GMC indicated that the amount it can afford for t be developed and installed j
Rs. 1 million. |

Adventure Software Inc. deputed their project manager to .
‘manager discussed with the top managers of GMC to get an overview of the project. He also discusseq

with the field PF officers at various mine sites to determine the exact details of the project. The project

manager identified two broad approaches to solve the problem. One s to have a central database which

would be accessed and updated via a satellite connection to various mine sites. The other approach
update the central database periodically through

is to have local databases at each mine site and to
done on a daily or hourly basis depending on the

a dial-up connection. This periodic updates can be
delay acceptable to GMC in invoking various functions of the software. He found that the second

approach is very affordable and more fault-tolerant as the local mine sites can operate even when the
communication link temporarily fails. In this approach, when a link fails, only the update of the central
database gets delayed. Whereas in the first approach, all SPF work gets stalled at a mine site for
the entire duration of link failure. The project manager quickly analyzed the database functionalities
required, the user-interface issues, and the software handling communication with the mine sites. He
arrived at a cost to develop from this analysis. He found that a solution involving maintaining local

databases at the mine sites and periodically updating a central database is financially and technically
h the GMC management and found that the

feasible. The project manager discussed his solution wit
solution would be acceptable to them.
, P g i127)

| Case study

recor
feware would hel
his software to

carry out the feasibility study. The project

Requirements analysis and specification

he aim of the requirements analysis and specification phase is to
mer and to document them properly. This phase consists of

ts gathering and analysis, and requirements specificatio

understand the exact I¢
quirements of the custo two distinct
n as fok

activities, namely requiremen

lows:>

: i

Scanned by CamScanner

. 2.2 Classical Waterfall Model 37

1. Requirements gathering and analvsis:(’l‘hin activity consists of first gathering the
requirements and then analyzing the gathered requirements,) The goal of the requirements
gntlwring activity is to collect all rele]}

A vant, information regarding the product to be developed
' from the customer with a view {0 clearly understand the customer requirements. Once the re-
quirements have been gathered, the analysis activity is taken up. The goal of the requirements
analysis activity is to weed out the incompleteness and inconsistencies in these requirements.
Note that an inconsistent requirement is one where some part of the requirement contradicts

- with some other part. On the other hand, an incomplete requirement is one where some parts
of the requirement may have been omitted inadvertently.

2. Requirements Speciﬁcation:@hc customer requirements identified during the require-
ments gathering and analysis activity are organized into a Software Requirements Specification
(SRS) document> The three most important contents of this document are the functional re-
' quirements, the non-functional requirements, and the goals of implementation. Functional

,rauirements describe the functions to be supported by_tfxe system. Each function can be
characterized by the input data, the processing re

quired on the input data, and the output

data to be produced. The non-functional requirements identify the performance requirements,
the required standards to be followed, etc.

The SRS document is written using end-user terminology. This makes the SRS document
understandable by the customer. After all, it is important that the SRS document be reviewed
. and approved by the customer. The SRS document normally serves as a contract between the
development team and the customer. Any future dispute between the customer and the de-
~ velopers can be settled by examining the SRS document. The SRS document is therefore
“an important document which must be thoroughly understood by the developer team, and
reviewed jointly with the customer. The SRS document not only forms the basis for carrying
out all the development activities, but several documents such as users’ manuals, system test
plan, etc. are prepared directly based on it. In Chapter 4, we shall examine the requirements
~ analysis activity and various issues involved in developing a good SRS document in detail.

Design

he goal of the design phase is to transform the requirements specified in the SRS document
into a structure that is suitable for implementation in some programming language)) In techni-
cal terms, during the design phase the software architecture is derived from the SRS document.
Q‘wo distinctly different design approaches are being used at, present. These are the traditional
design approach and the object-oriented design .approa,cl;) In the following, we briefly dis-

cuss the essence of these two approaches. These two approaches are discussed in detail in
Chapters 6, 7, and 8.

1. Traditional design approach: The traditional design approach is currently being used
by many software development houses. The traditional design technique is based on the data
flow-oriented design approach. While using this technique the design phase consists of two
important activities; first a structured analysis of the requirements specification is carried out
where the detailed structure of the problem is examined. This is followed by a structured
. design activity. During structured design, the results of structured analysis are transformed
 into the software design.
Structured analysis involves preparing a detailed analysis of the different functions to be
supported by the system and identification of the data flow among the functions. Each function

Scanned by CamScanner

Softwarfi [li rf_f Cy(\]fj

e
.—__’—-—-’/

it et iy B
Y

38

en re('ursi\"fly decomposed into var

: f)u.. ¢
ctions (also known as procegg,, .- !

eg) ¢
dentified. Data ﬂorw diagray, (I]j';_)

d to document th'e res?*ults. The DFY) t"f‘fhnh”v
s usually restricts 1tsel‘f to the why TL[;(:(‘?'“
avoids discussing tl_xe how(t(, do iy sl-,:‘b'-
uirements speCiﬁQd o) th(.} SRA,S dOCumt:m%i!h’
g these subfunctions is a'nalyzeql,q.q:‘;
iy

ly and th
he various fun
are also 1

required by the user is studied careful
functions. In addition to identifying th
system, the data flow among the functions
are used to perform structured analysis and
is discussed in Chapter 6. Structured analysl
be done aspects of the problem and carefully
During structured analysis, the functional red X
decomposed into subfunctions and the data-flow amo

represented diagrammatically in the form of DF DS‘- o amalysis activity is completo, ¢ :
Structured design is undertaken once the structur Oty §

s i also called hj
tured design consists of two main activities: archltectl(;ra: i(;mg}?ig(h—levela l(ll(;(ii hr;g.h.le"&} ’
design) and detailed design (also called low-level CBSBIT, 0 @ the i |
decomposing the system into modules, and representing b 'j is sometimes referred ta ton |
lationships among the modules. A high-level software deSlﬁn'n dividual modules are j) %
software architecture. During detailed design, internals of the fl the modules are desi g |
in greater detail, e.g., the data structures and algomtlllms o line oit-th Slened gy
documented. Several well-known methodologies are available for working € architect

;|
and low-level designs.

2. Object-Oriented design approach: Object-

technique. In this technique, vgrious objects that occur in- 7 5 ol |
tion domain are first identified and the different relationships that exist among these ohjey,|

are identified. The object structure is further refined to o‘ptain'the detailed design. The: OODE
“approach has several benefits such as lower development time anfl effort, E'llld better Maintz, |
ability of the product. The object-oriented design technique 15 discussed in Chapters 7 ang B

oriented design (OOD) is a relatively bin]
the problem domain and the mlu,i

Coding and unit testing _ ; t
The purpose of the coding and unit testing phase of software development is to translate the |
software design into source code. The coding phase is also sometimes called the implementatio |
phase since the design is implemented into a workable solution in this phase. Each componert
of the design is implemented as a program module. The end-product of this phase is a set ¢f |
program modules that have been individually tested.) To enable the engineers to write good |
quality programs, every software development organization normally formulates its own coding |
standards that suits itself. A coding standard addresses issues such as the standard waysd |
laying out the program codes, the template for laying out the function and module headers. |
commenting guidelines, variable and function naming conventions, the maximum number o
source lines permitted in each module, etc. , ;

After. co.ding. 'is complete, each module is unit tested. Unit testing involves testing eachg?
quu{e in 1sol§t10n f..:I‘OII‘I otherrmociiules, then debugging, and documenting it. The mait |
obqectlvg of unit .testmg. is to .deterr_mne the correct working of the individual modules duriz i
unit testing. During unit testing, each module is tested in isolation as this is the most efficiest

way to debug the errors identified at this stage (can ‘ : ¢ 2 el |
o :) You guess t ? . €350
behind testing a module in isolation is that the o o Pasorly) At

cases, testing criteria, and management of test
unit testing techniques in Chapter 10. :

Scanned by CamScanner

2.2 Classical \Yuterfnll Model e

et e

Integration and system testing

Clm-egration of different modules is undertaken once they have been coded and unit tested.
During the integration and system testing phase t?h(a difforont modules are integrated in a
p]nnncd manner. The modules making up a soft\\"are product are almost never integrated in
one shot)(ca_n you guess the reason for this?). Integration of various modules are normally
carried out incrementally over a number of steps. During each integration step, previously
planned modules are added to the partially integrated system and the resultant system is
tested. Finally, after all the modules have been successfully integrated and tested, system
testing is carried out. The goal of system testing is to ensure that the developed system con-
forms to its requirements laid out in the SRS document. System testing usually consists of
three different kinds of testing activities as follows:

1. a-testing: a testing is the system testing performed by the development team 7
9. B-testing: This is the system testing performed by a friendly set of customers

3. Acceptance': testing: This is the system testing performed by the customer himself after S
- the product delivery to determine whether to accept the delivered product or to reject it.

System testing is normally carried out in a planned manner according to a system test plan
document. The system test plan identifies all testing-related activities that must be performed
and specifies the schedule of testing, and allocates resources. It also lists all the test cases and
the expected outputs for each test case. Immediately after the requirements specification phase
a system test plan can be prepared which documents the plan for system testing. It is pos-
sible to prepare the system test plan just after the requirements specification since it can be
prepared solely based on the SRS document. The results of integration and system testing are
documented in the form of a test report. The test report summarizes the outcome of all the
testing that were carried out during this phase. We discuss the details of various integration
and system testing techniques in Chapter 13.

Maintenance

(Maintenance of a typical software product requires much more effort than the effort necessary

to develop the product itself) Many studies carried out in the past confirm this and indicate
that the relative effort of development of a typical software product to its maintenance effort is
roughly in 40:60 ratio. {The proportion of effort on maintenance can be higher for long lasting
software such as operating systems, certain product manufacturing software, et-c) On the other
hand, the proportion of maintenance effort can be low for software that are used for just a
couple of years such as a software developed for a certain business application and the business
itself gets obsolete. Maintenance involves performing any one or more of the following three
kinds of activities:

1. Corrective maintenance: This type of maintenance involves correcting errors that were
not discovered during the product development phase.

2. Perfective maintenance: This type of maintenance involves improving the implementa-
tion of the system, and enhancing the functionalities of the system according to the customer’s
requirements.

Scanned by CamScanner

T N Ml L R i Y TS SRR S

Software Lifa C E

B A I M
\\ i

= e ¥
sually required for : N
15 .])ortlng t ;

maintenance 18 l y be required ¢ \
ma s Nale A 1O pet 4 e, &
!DCL t/he x‘lf}_'.

3. Adaptive maintenance: Ad o example, porting
L , HOT CXc s sxyed 8¢
ware to work in a new environment. X0 - operating gystem. Sof,
form or Wit ¢ (%

to work on a new computer plat o . diSCUSSed in Chapter 13.
Details of various maintenance activities are
7 . erfall Model
fﬂ(ﬂ) Shortcomings of the ClaSSlcal Wa:I ver, it suffers f
' owe s from

‘The classical waterfall model is a very simple m(;ldilt.comings oi,D the classical Wai(:? o Shiy
comings. Let us examine some of the important sio Clall i
e transition between two phases t »

1. The classical waterfall model considers th : o o g](

; the various activities durj liy

to a waterfall. That is, once a phase 18 comp!zt;, ng the
ere 1

are assumed to be flawlessly done and th o scope for rework at a later ¢

s an idealistic one since it assumes that no error jg evy
fe cycle phases, and therefore, Jeaye o

aptive

iy

The classical waterfall model i

committed by the engineers during any of the li |
scope for error correction. !

However, in practical development environments, the developers do commit a large g,
ber of errors in almost every phase of the life cycle. The cause for defects ca X
many—oversight, wrong assumptions, use of inappropriate technology, communicaiy,
gap among the project engineers, etc. These defects usually get detected much later;
the life cycle. For example, a design defect might go unnoticed till the coding or testiy
phase. Once a defect is detected, the engineers need to go back to the phase where th
defect had occurred and redo some of the work done during that phase, and also the wor
of later phases affected by the rework. Therefore, in any practical software developmer
work, it is not possible to strictly follow the classical waterfall.

‘2. This model assumes that all requirements are defined correctly at the beginning of th
project, and on basis of that, the development work starts. However, that is seldon
the case in real projects. The customers keep on changing the requirements as ther

development proceeds. Thus, it becomes difficult to accommodate later requirement

change requests made by the customer.
This model assumes, that all the phases are sequential. However, that is rarely the c&
) d ‘

For exa?nple, for efficient utilization of manpower, in a company the members assigne
A :hz te:stlnghwork, may start their work immediately after the requirements speciﬁcati‘)”
oge;:;gnéo ESF;}(’ISteH;]teS‘i ?aseSf- Therefore, we can say that the design and testing pha®
oV : uently, it is safe to say that in a : iy arll -
. , ‘ practical software development SC€%°"
: “the different phases might overlap, rather than having a - 'e el P time at which
one phase stops and the other starts. . S pronae p.omt g 1mv Py

Scanned by CamScanner

2.3 ITERATIVE WATERFALL MODEL

ection that in a practical software development work, it is not
classical waterfall model. We branded the classical waterfall
In this context, we can view the iterative waterfall model as
he classical waterfall model so that it becomes applicable to
tially,(the main change to the classical waterfall
hs from every phase to its preceding phases as
on of the errors committed during a

We have seen in the previous s
possible to strictly follow the
model as an idealistic model.

making necessary changes to t
practical software development projects.|Essen
model is in the form of providing feedback pat

shown in Figure 2.3. The feedback paths allow for correcti
phase, as and when these are detected in a later phase. For example, if during testing a design

error is identified, then then the feedback path allows the design to be reworked and and the
changes to be reflected in the design documents.) However, observe that there is no feedback
path to the feasibility stage. This means that the feasibility study errors cannot be corrected.

Feasibility study

Requirements analysis | A
and specification— -
A o Kl

: Desi'g/n” —

Ful o Godingand s T4
-~ unit testing—
it el

M/ b T | Integration and

system testing ‘1 ~

Maintenance

Figure 2.3: Iterative waterfall model.

Scanned by CamScanner

2.3.2 Shortcomings of the Iterative Waterfall Model
A good understanding of the waterfall model is necessary to appreciate and unde Tstang .
s»ther development processes. However, the waterf: all model suffers from many \hunf,,”\ ”""
shortcomings are addressed to different extents by the other life cycle models that y
liscuss subsequently. Some of the glaring shortcomings of the waterfall model are the f(,nm; :
1.[The waterfall model cannot satisfactorily handle the different types of risks th,, A 1o,
life software project may suffer from.) For ex: imple, the waterfall model assies tha :‘;
requirements are completely specified before the rest of the development ACtivities |
start. Therefore, it cannot accommodate the uncertainties concerning the re Jlirery,. :
that exist at the beginning of most of the projects. As a result, it cannot be mthfdm_

used in projects where the customer is not clear about his requirements and cay, Dl

rough requirements only.

To achieve better efficiency and higher productivity, most real life projects find it diffic,,.
to follow the rigid phase sequence prescribed by the waterfall model) By the term an;
phase sequence, we mean that a phase can start only after the previous phase is comple:
in all respects. A rigid adherence to the waterfall model would create blocking stat.
the system. That is, once a developer completes his work, he idles waiting for the p_g:
to get over. Since the work required to be done in a phase is distributed among seve:.
team members, some members may complete their work earlier than other mempe-

)

Scanned by CamScanner

Figuss —

54 PROTOTYPING MODEL

The

srototvping model requires that before carrying out the development of the actual soft-
WwWare.

4 working prototype of the system should be built. A prototype is a toy implementation
of the system. A prototype is usually built using several short cuts. The short cuts might
- vol sing inefficient. inaccurate, or dummy functions. The short cut implementation of a
fmetion. for example. may produce the desired results by using a table look-up rather than
by performing the actual computations. A prototype usually turns out to be a very crude

version of the actual system, possibly exhibiting limited functional capabilities, low reliability,
and inefficient performance as compared to the actual software.

Scanned by CamScanner

ZJICMLE UW\s uvmas -~ .
. . s [1975]. is shown 1 “igure
MU Brooks ‘l. (0 ‘\.‘,l()])”n\llf 15 shown 1 I gure 2.5

. A frweare (. - \
The prototyping model of softwars](I Jopment o control various risks Th“‘\hS
. P ace is prototype devell . . ' 1S j
Ficure 2.5. the first phase 15 protta : " ototyping starts with ap i,
hv an iterative development cycle. (IH this model, prototyping AT ity

.d out and a prototype is built, Ty,

Sh()v,'.r

ments gathering phase. A quick design 1s (‘“”,]f wwaluation. Based on the cust df.‘\'g],_
prototype Is <ubmitted to the customer for his cvare -tﬂ)hr modified Thid iy fer“‘”{“

o e : ; » prototype 15 SULabL ‘ S cycle &
the requirements are refined and the prototy] yele of Ob,

ing customer feedback and modifying the])I‘Ot()type COIltlIlllCSttlH1 the t(;ust?mer aDDro‘»{_“j

prototvpe. Once the customer approves the PTOtOt}fPe’_t_he ag ue s}l’(s em is develgpe, o

the iterative waterfall approach.) In spite of the availability o 'a. working l_')TOtOtpr the ¢
document is required to be devéloped for carrying out traceability an.alysm, verificatioy, .
test case design during later phases. However, especially for developing GUI part using:'
prototyping model. the requirements analysis and specification phase would become reqy, f:
<ince the working prototype that has been approved by the customer can Serve as an anip,
requirements specification.

The code for the prototype is usually thrown away. However, the experience gathered .
developing the prototype helps a great deal in developing the actual system. Therefore, e:
though the construction of a working prototype might involve additional cost, for syste:
with unclear customer requirements and for systems with unresolved technical issues. t:
overall development cost might turn out to be lower in the prototype model than that of:
cquivalent system developed using the iterative waterfall model. By constructing the proto

and submitting it for user evaluation, many customer requirements get properly defined &
technical issues get resolved by experimenting with the prototype. This minimizes the cha
requests from the customer and the associated redesign costs.

Scanned by CamScanner

=
=)

2.5 Evolutionary Model

l
i
|
!
!

e e e P e e s))

[t))
' Requirements ;
gathering :
:
‘ |
!
l |
1
1
|
' i
_~ Quick design \\ |
u"; :
: 1
1
1
1
: i
Prototype
development
. Refine requirements
| Incorporanng Build prototype
customer suggestions
: Y

\

\ Customer evaluation /

! ~
{ ot prototype

L

Acceptance
by customer

development

- o e o e e e

P

Figure 2.5: Prototyping model of software development.

2.5 EVOLUTIONARY MODEL

This kife cvele model is also referred to as the successive versions model and. som'etimes. as
the increfnental model. In this life cycle model, first a simple working syst(.em is bml‘t, which
subsequently undergoes many functionality improvements and additions until the- desired sys-
: ‘ arv software development process is therefore sometimes referred

em is realized. The evolution

-
*
| €

Scanned by CamScanner

Batbwsre |[ife (.
46 .

S : 70| 59
o { L o o Vo il SRS - ‘' ,'ql‘ﬂ t_:‘/_‘
to ns design o little, build a Htle, test o little, deploy o 1ittle maode) -
’ ciue beery specife he design, il test, st detlovivens . ‘"
the requirements have been specified, the design, , . ployinens Wiy, "

interlenyved,

2.6.1 Life Cycle Activities

In the evolutionary life cycle model, the software requirement, is firpt broker ey, f1n
eral modules (or functional units) that can be incrementally constructed sy (e
Figure 2.6), The development team first develops the core modules of the sysem, 1y,
modules are those that do not need services from the ather modules, Op 1he Othey i'l:""'
non-core modules need services from the core modules, This initial product skeletoy, i, rrvf;!:';
into increasing levels of capability by adding new functionalities in suceesive VeTtions ,’ !
evolutionary version may be developed using an iterative waterfall model of developmen [;
evolutionary model is shown in Figure 2.7. Each successive version of the product, iy 4 ¢
functioning software capable of performing more work than the previous vergions. 3

. fl s
.h'/l;‘I‘J/l {:V

.

e e e e . s

A, B, C are modules of a software product
that are incrementally developed and delivered

Figure 2.6: Evolutionary development, of 4 software product,

Advantages

This model of development has several advantages. In this model, the user gets a chance to
experiment with a partially developed software much before the complete version of the sys
tem is released. Therefore, the evolutionary model helps to accurately elicit user requirements
during the delivery of different, versions of the software. As a result, the change requests after
delivery of the complete software become very less. Also, the core modules get tested thor-
oughly, thereby reducing chances of errors in the core modules of the final product. Further,

this model obviates the need to commit large resources in one go for development of the sys
em, ‘

Disadvantages

The main disadvantage
is difficult to divide
and which can be

of the successive versions model is that for most practical problems it

: the problem into several versions that would he acceptable to the customer
incrementally implemented and delivered.

Scanned by CamScanner |

tionary Model
ieadl Albdotdotre 47

9.5 Evolu

:

Rough requirements specification

srrn o et

\ 4

Identify the core and other parts
to be developed incrementally

/

r Develop the core part using
an iterative waterfall model

/

Collect customer feedback and 5
modify requirements

4

Develop the next identified features
using an iterative waterfall model

All features complete

Maintenance

Figure 2.7: Evolutionary model of software development.

Types of projects for which suitable
The evolutionary model is normally useful for very large products, where it is easier to find
modules for incremental implementation. Often evolutionary model is used when the customer
:;e:irg to receive the product in increments so that he can start using the different features
dovel when they' are developed rather than waiting all the time for the full product to be
eloped and delivered. Another important category of projects for which the evolutionary

model is suitable is the following.

The evi H ”
, olutionary model is a very natural model to use in object-briented software develo

| projects. |

Scanned by CamScanner

pment ; ,

- g

software Life O
Software Life Cy,

1K
PRBRERIS e s AR e e e ”’-‘I(n,l

s, the system can easily be partjg;,
) 0N
less self-congz:.

Because in object-oriented development projec

Also, 0 ;'inn,l l

stand-alone units in terms of the ohjects hjects are more or
l'h‘

that can be developed independently.

2.6 SPIRAL MODEL

The apiral model of software development. i3 ghown in Fi
sentation of this model appears like a gpiral with many loops-

the spiral is not fixed and can vary from project to project- fth
e e ~ 4 1 Ve 3 [=) e s) I
Figure 2.8 is just an example. Each loop of the spir al is called a phase O the software Prog,

It can be seen that this model is much more flexible compared to the Ot‘} ter models, sin,
exact mumber of phases through which the product is developed is not fixed.

gure 2.8. The diagrammayj, ,
e
The exact number of o T

§)%
The number of loops -“ho“H 0
A

te

borated and analyzed and the rigj.

e
[Over each loop, one or more features of the product are ela :
ed through prototyping. Based on this, th, |
|

| at that point of time are identified and are resolv

' identified features are implemented. -
——

i

2. Identify and

1. Determine
resolve risks

objectives
and identify
alternative
golutions

\D
4. Revi d
ey A 3. Develop

plan for the
next phase next level

Figure 2.8: Spiral model of software development.

A

Scanned by CamScanner

